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SUMMARY

A numerical lifting-surface method has been used to calculate direct gust

forces and moments on wings of several planforms. The gust velocities are con-

tinuous and vary sinusoidally in the stream direction and are also uniform across

the wing span. The procedure has the advantage of rapid machine calculation and

includes the effects of wing planform, nonsteady subsonic flow, and induced flow

effects. The method provides for calculation of gust forces on a basis consis-

tent with that for the calculation of forces due to motion and deformation. The

results include the in-phase and quadrature components of the following

quantities: (a) spanwise distribution of section lift coefficient, (b) total

lift coefficient, and (c) total pitching-moment coefficient. In addition, gen-

eralized gust forces on approximate fundamental cantilever bending modes (para-

bolic) are also included. Results have been obtained for 60 ° and 75 ° delta wings,

35° sweptback wings of aspect ratio 4.00 and 9.43, a 5° sweptback wing of aspect

ratio 11.60, and an unswept wing of aspect ratio 6.00. Conditions for which cal-

culations were made include two Mach numbers (generally, 0.40 and 0.90) and a

reduced-frequency range of 0 to 1.0. The direct gust forces and moments are in

forms suitable to be inserted in equations of motion used in the calculation of

the dynamic responses of flexible lifting vehicles to random turbulence and to be

compared with results from other methods.

INTRODUCTION

Current analytic methods for calculating airplane responses to continuous

vertical atmospheric turbulence (random process theory) require a knowledge of

unsteady generalized aerodynamic forces due directly to turbulence velocities.

Within the framework of random process theory, these aerodynamic forces are

described in terms of the forces produced directly by vertical gust velocities



which vary sinusoidally along the flight path of the airplane and which are uni-
form along the span of the lifting surface. For convenience in application,
values of unsteady aerodynamic forces due to these inputs are desired for the
planform of interest.

Explicit solutions of the aerodynamic equations for a general lifting surface
have not been found. Approximations involving strip theory have been utilized,
such as the use of steady-state spanwise lift distributions together with an
amplitude function based on two-dimensional flow and simple time lags to account
for gust field penetration. Results of work on unsteady aerodynamic forces perti-
nent to gust analysis can be found in references 1 to 4. Information for wings
of finite aspect ratio in subsonic compressible flow is very limited.

Reference 5 has provided a numerical method for solving the equations for a
lifting surface (utilizing a high-speed digital computer) which can be used for
calculating sinusoidal gust forces in subsonic flow. This method was developed
primarily for flutter studies, but the applied downwashdescription permits it to
be extended to the gust case. It therefore provides aerodynamic forces on a con-
sistent basis for both oscillating airstream and oscillating lifting surfaces.
An application of this technique to a swept wing has been demonstrated as an inci-
dental part of the study of reference 6 with satisfactory results indicated.

The purpose of the present report is (1) to demonstrate the application of
the procedure of reference 5 to the calculation of generalized forces, including
lift and pitching moments,due to sinusoldal gusts for several commonlyused wing
planforms and (2) to present these results in the form of curves that maybe uti-
lized in simplified calculations. The data for planforms considered herein
include results at two subsonic Machnumbersfor 60° and 75° delta wings, 35°
sweptbackwings of two aspect ratios, one 5° sweptbackwing, and two unswept wings.
A comparison is madeof the results of the numerical procedure and those of a
modified strip theory. These results will add to the limited available informa-
tion on unsteady lift functions for sometypical wings of finite aspect ratio in
slnusoidal gusts in subsonic flow.

SYMBOLS

A

Ai,Bi

Ai,Bi

b

Ci,Di

aspect ratio, b2/S

real and imaginary parts, respectively, of spanwise distribution of
generalized gust force per unit gust velocity

normalized values of Ai and Bi, respectively (see section entitled
"Gust Forces")

wing span, ft

real and imaginary parts, respectively, of total generalized gust force
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Ci,Di

CL

Cm

e

c a

cl

c r

ct

K

k

L

M

Mij

My

P,Q

Ap

_pG

Qi( )

normalized values of Ci and Di, respectively (see section entitled

"Gust Forces")

lift coefficient, L/qS

pitching-moment coefficient, 2My/qSc r

lift-curve slope, dCL/d_ , per radian

local wing chord, ft

average chord, S/b, ft

section lift coefficient

root chord of lifting surface, ft

wing chord at tip, ft

kernel of equation (2), integral equation (see ref. 5)

reduced-frequency parameter, eCr/2U

lift-force, Ib

Mach number

generalized inertia force or moment coefficient representing coupling

between ith and jth modes, slugs

pitching moment about midpoint of root chord, positive nose up

real and imaginary parts, respectively, of normalized unsteady lift func-

tion for wing of infinite aspect ratio; for steady flow: P = i, Q = 0

differential pressure, ib/sq ft

pressure distribution due to downwash of jth mode, per unit generalized

coordinate, _/_qj

pressure distribution due to gust downwash, per unit downwash velocity

ith mode generalized aerodynamic force or moment

generalized aerodynamic force due to unit gust velocity
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_.j(_) aerodynamic force due to wing motiongeneralized

q dynamic pressure, pU2/2, ib/sq ft

qi(_),qj(_) ith and jth generalized, coordinates, respectively

S wing area, sq ft

t time_ sec

U velocity of airstream, ft/sec

w applied downwash velocity, ft/sec

Wg gust downwash velocity, ft/sec

x coordinate along chord of lifting surface measured rearward from

leading edge of root chord

y coordinate along semispan of lifting surface measured outward from
root chord

y* = Y
b/2

Z

A

A_e

_i(x,y)

P

wing deflection, ft

angle of attack, radians

sweepback angle of 1/4 chord line of lifting surface, deg

sweepback angle of leading edge of lifting surface, deg

wavelength, ft/cycle

taper ratio, ct/c r

shape of ith mode of airplane structure

density of air, slugs/cu ft

frequency, radians/sec

Subscripts:

i,j integers indicating modes

A bar above a symbol indicates amplitude only.
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ANALYSIS

In this section the relationship of the gust force terms to the other terms

in the general equations of motion will be shown. The numerical procedure for

determining the pressure distribution over the lifting surface will also be

briefly described.

Gust Forces

The general equations of motion based on uncoupled modes of motion and defor-

mation for an airplane flying through a continuous sinusoidal gust field can be

written as follows (based on refs. 6 and 7):

n n

__2 I-- Mijqj(_) + _i2Mii(_)qi(_) Qi(_) _ M G -= = Q_j(m)qj(m) + Qi(m)Wg
j=i j:l

(i = i, 2, 3, ... n) (la)

where the terms Q_ij(_) and QG(o_) are the generalized aerodynamic forces due

to airplane motion and gust velocity_ respectively. The generalized forces on

the right-hand side of the equation are defined as

and

_ij(_) = Jf_i(x,y) _q--_j (x_y;_) dx dy (ib)
S

Ap G

S

(ic)

This report is concerned with the determination of generalized gust forces

_(_). Integrating equation (ic) over the chord yields

: 7oi + iBi(y*, ldy*
(id)

where A i and B i represent the real and imaginary parts_ respectively_ of the

spanwise distribution of the generalized gust forces per unit amplitude of gust

velocity. The terminology used herein of real and imaginary implies the in-phase



and out-of-phase componentsof a quantity with respect to the applied downwash
at the leading edge of the root chord of the lifting surface. Integrating equa-
tion (ld) over the span yields

: ci( )+ iDi( ) (le)

where C i and Di represent the real and imaginary parts, respectively, of the

total generalized gust forces.

For many applications the degrees of freedom of rigid-body translation,

rigid-body pitch, and first flexible bending mode of vibration are sufficient to

determine the desired result. Consequently_ the results presented herein are

responses for these degrees of freedom. These results are as follows, referring

to equation (lc):

(1) For rigid-body translation, i = 1 and _i = l; therefore, A 1 and B 1

may be interpreted as the real and imaginary parts of the spanwise lift distri-

bution. The terms C1 and D1 are then the real and Imaginary parts of the

total lift obtained by integrating A 1 and B 1 over the span of the lifting

surface. For purposes of emphasizing the nonsteady flow characteristics, norma-

lized values of C1 and D1 are obtained from integration after dividing A 1

and B 1 by the modulus of the steady-state lift _IC_ + D_. These normalized

values will be designated C_ and D_.

(2) For purposes of presentation, the quantities A 1 and B 1 have been

normalized by dividing each value of A 1 and B 1 by the magnitude of the total

lift for the frequency under consideration. This procedure eliminates the

effect of magnitude and illustrates the effect of reduced frequency on the

In-phase and quadrature portions of the spanwlse llft distribution. These nor-

malized values will be designated A_ and B_.

(3) For rigid-body pitch, i = 2 and _2 : x; thus, C2 and D2 may be

interpreted as the real and imaginary parts of the total pitching moment. As

was the case for C 1 and D1, C2 and D 2 will be presented as normalized

values C_ and D E. These are obtained by dividing A2 and B 2 by the modulus

of the steady-state moment _C2p + D2p.

(4) For a first bending mode approximated by a parabolic spanwlse shape,

i = 3 and _3 = (y.)2. Since _3 is only a function of y, A 3 = Al(Y*) 2 and

B 3 = Bl(Y*) 2. Spanwise integration yields C 3 and D 3 which are the real and

imaginary parts of the gust forces for this mode shape.

6



. * . . * * / /In this paper A 1 and B1, C1 and D1, C2 and D2, and C3 qS and D 3 qS

will subsequently be presented for the various planforms considered.

Determination of Pressure Distribution

The real and imaginary components of the pressure distribution _p1_g in

equation (lc) are obtained by the numerical method of reference 5 with the sub-

stitution of an expression for the gust downwash for that of motion and deforma-

tion downwash. A brief description of some of the features of the numerical

method and of the expression for the gust downwash is given below.

The numerical method is applied to the solution of a linear integral equa-

tion of the form

w(x,y) --u_ ffAp( ,n)K(x- ,y-n;k,M) dR
S

(2)

The function K, the kernel of the integral equation, physically represents the
contribution to the downwash at a field point (x,y) due to a sinusoldally pul-

sating pressure doublet of unit strength located at any point (_,_). The solu-

tion of the equation is obtained from a high-speed digital computer program which

requires only that the following information be provided:

(1) The coordinates of nine I control points on one-half of the wing and the

downwash at each point

(2) The parameters that describe the wing boundaries

(5) The subsonic Mach number

(4) _ne values of the reduced frequency k = _Cr/2U for which solutions

are desired

The method of reference 5 was developed for flutter studies; consequently,

the expression given therein for the downwash is in terms of sinusoidal %_ng

motion and deformation. This expression can be _ritten

w(x,y)eimt = _--_xZx,Y) + imz(x,y)_eimt
(3)

For the generalized gust forces no motion or deformation of the wing is

desired in the expression for the downwash. Rather, the downwash expression must

account for the sinusoidal variation of the gust downwash along the wing in the

chordwise direction. The appropriate expression is

1Since preparation of this report, the computer program has been extended to

12 and 16 control points.
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w(x,y)e i_t = wge _°t = _ge (4)

where x c is the location of a control station relative to the leading edge of

the root chord. Equation (4) can be written

w(x,y)ei_t = _gei_t (cos 2kxc-iCr sin 2kXClcrj
(5)

where

6OC r
k -- --

2U

For this downwash the pressure distributions are obtained numerically and the

generalized gust force is obtained by integrating over the lifting surface. (See

ref. 5.)

RESULTS AND DISCUSSION

Presentation of Results

The planforms for which results are presented herein are shown in figure i.

These planforms include 60 ° and 75 ° delta wings and two wings with quarter-chord

sweepback angle of 35° and taper ratio of 0.42, with aspect ratios of 9.43 and

4.00. Also included is a wing with a 5° sweepback angle, aspect ratio of 11.60,

and taper ratio of 0.44. Unswept wings are also considered; the results for the

"classic" rectangular wing of aspect ratio 6.00 are included for comparison

along with an unswept wing (quarter-chord line perpendicular to root chord) of

aspect ratio 6.00 and taper ratio 0.50.

Calculated values of steady-state lift- and pitching-moment-curve slopes for

all planforms considered are shown in table I. Some of these values are discussed

in a subsequent section entitled "Limitations."

Values of the normalized real and imaginary parts of the generalized gust

force for vertical translation (total lift), C_ and D_, respectively, are

given in figures 2(a) to 2(h). The phase relationship is given with respect to

the downwash at the leading edge of the root chord. Figure 2(a) gives results

from reference i (generally termed P and Q) which are for a wing with infinite

aspect ratio in incompressible flow (M = O) and provides a convenient reference

for the results for all the other planforms. Figure 2(b) gives results for a

rectangular wing of aspect ratio 6,00 in incompressible flow. A comparison of

present results with those obtained by using the approximation given in equa-

tion (33) of reference 4 is shown in figure 2(b) and shows almost the same

results.
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Values of the normalized real and imaginary parts of the generalized gust

force for rigid pitching motion (total pitching moment) are given in figures 3(a)

to 3(f) as C_ and D 2. This pitching moment is about the midpoint of the root

lifting surface. The moment relation used is My = CmqS_ r.chord of the
2

The normalized real and imaginary parts of the spanwise distribution of gen-

eralized gust forces for rigid-body translation (lift) A_ and B_ are shown in

figures 4(a) to 4(m) for the various planforms at two Mach numbers and various

values of k (generally 0, 0.5, and 1.O). It should be noted again that all

phase relationships are with respect to the downwash at the leading edge of the

root chord of each planform. All curves presented would, of course, exhibit sig-

nificant changes if the downwash reference were shifted to another location.

Figures 5(a) to 5(g) present values for the real and imaginary parts of the

generalized gust-force coefficients for a deflection mode with a parabolic shape

approximating the first wing bending mode C3/qS_ and D3/qS.

Discussion

Limitations.- The present procedure provides for the calculation of genera-

lized gust forces on a basis consistent with that for the calculation of genera-

lized aerodynamic forces due to motion and deformation of a lifting surface. It

is the purpose of this section to indicate the range of configurations and condi-

tions for which the preceding statement applies. The principal limitations are

with respect to aspect ratio and reduced frequency with a slight limitation on the

subsonic Mach number range, the maximum Mach number being approximately 0.95.

The application of the present procedure is limited to the lower values of

aspect ratio - say to less than lO or 12. In general, errors increase with an

increase in aspect ratio. This error as displayed by the steady-state lift-curve

slope for a rectangular wing in incompressible flow (M = O) is illustrated in the

following table. Values calculated by the present procedure are given in the

second column. Particularly noteworthy is the value for aspect ratio 20 of more

than 2_ (the limit value for infinite aspect ratio).

Steady-state lift-curve slope obtained from -

Aspect Lifting-line Lifting-surface

ratio Present theory theory

method (ref. 8) (ref. 9)

4.3o6
i0

12

15
2O

4.28
5-_

a5.68

6.15

6._

4.18

a4.81

5.00

alnterpolated values.
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A further indication of the error in the present procedure is provided by a com-

parison of the results with those from steady-state lifting-line theory presented

in the third column. The latter results were obtained from information in refer-

ence 8 and are considered to be progressively more accurate with increasing

aspect ratio. In contrast, the results of the present numerical procedure become

more accurate with decreasing aspect ratio. The tabulation indicates that errors

in the results of the present procedure are less than about lO percent for aspect

ratios less than lO. The source of the errors at the higher aspect ratios is

thought to be the limited number of control points and the particular numerical

integration employed.

An additional assessment of the present procedure may be made from the pre-

ceding t_bulation. The lift-curve slope for an aspect ratio of 6, obtained from

lifting-surface equations by a different method of solution described in refer-

ence 9, is given in the fourth column. The close agreement with results from the

present method indicates consistency of results from applying lifting-surface

theories at the lower aspect ratios.

Inasmuch as the aspect ratios of two of the several wing configurations con-

sidered herein were in the vicinity of lO, the errors with respect to the results

of lifting-line theory were investigated in a manner similar to that for the

rectangular wing. The data from lifting-line theory were obtained by interpola-
tion of results from references 8 and lO. Prsndtl-Glauert corrections for com-

pressible flow were made in accordance with the procedure described in refer-

ence 10. The results are presented in the following table:

Planform

5° swept

5° swept

35° swept

35° swept

A _T M

Steady-state lift-curve slope

obtained from -

Present References 8

method and lO

ll.60 0.44 0.33 6.08

i1.60 .44 .7O 7.55

9.43 .42 .58 5.06

9.43 .42 .90 6.32

6.65
4.66

5.85

The variations of error with aspect ratio are consistent with those for the

rectangular wing.

There is a value of reduced frequency beyond which errors in the present

procedure become excessive. This limitation arises because, in the present usage_

the applied downwash is satisfied at only three points along the chord, at each

of three semispan stations. In numerical operations it is common practice to

require at least nine or ten uniformly spaced points to describe a cycle of a

sine function. Therefore, in the present procedure_ errors may be expected to

increase sharply for frequencies greater than those having a wavelength of about

3 chords. For all wings considered herein, the maximum chord is the root chord

and the frequency limitation can be expressed as

lO



and

Therefore_

> 3cr (6a)

X = _ = __cr (6b)
k I

and

_cr
_> 3cr (6c)
k I

or approximately 3

3

k I < 1 (6e)

A similar limit in reduced frequency arises for sweptback wings due to a

sinusoidal variation of downwash along a line through the most forward control

points (in this case_ the quarter-chord line) of the wing and replaces the limit
C r

described previously for the condition b--7_< tan A as will be indicated. The

following sketch is presented to clarify the terminology.

T
c r

b/2

ll



To approximate a sinusoid along the span

but

= _c---_r> 31 sin A (Ta)
k2

= _ = Wing length along quarter-chord line
cos A

(to)

hence,

k2 < _ Cr (7c)
tanA

2

For the limitation of equation (7c) to apply,

k 2 < k1

and, for this condition, considering equations (6d) and 7(e),

Cr < _ (7d)
3 _ tan A 3

2

therefore,

Cr

b--_ < tan A (7e)

For example, for A = 35° and b/2 = 3.35, it can be seen that 1 < 0.700_
Cr 3.35

therefore, k2 is the limiting reduced frequency and k2 < _ 1
3 3.35'(0.700) or

k 2 < 0.446. Thus, for this planform the limitation on k 2 due to sweep is quite

severe. For numerical procedures using more control poiots, limitations on k 1

or k 2 may be relaxed.

Application of tables and figures.- As mentioned previously, some of the

results were normalized to illustrate better the effects of nonsteady flow in

terms of reduced frequency. For application to airplane-response calculations,

these results must be converted to forces, as defined by equation (ld), suitable

for insertion into equation (1). The necessary conversions are described in the

following paragraphs.
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The results in figures 2 and 3 are converted by use of the equations

/dCL\ * . * (s)

and

',,,dec]k=O
(9)

respectively.

The results in figure 4 are converted to spanwise force distributions suit-

able for computing generalized gust forces on flexible wing bending modes by use

of the equation

\ dc_/k=O
_ " * *k_+ +

(i0)

The results in figure 5 may be converted to generalized gust forces on

parabolic wing bending modes by multiplication by qS.

The values of (dCL_ and (dCm_ used in equations (8) to (i0) are
\ d /k=O ,,-6-J/k:o

given in table I.

Co__arisons with modified strip theory.- In the absence of a procedure or
the facilities for a rapid numerical solution of lifting-surface equations, there

is a temptation to consider some form of strip theory. In this section a com-

parison is made of results of a strip theory with those of the numerical lifting-

surface calculations.

One form of strip theory which appears to offer a useful approximation for

gust-force calculations for wings of moderate to large aspect ratio consists of

assuming that the lift at a local point on the span is equal to the lift at that

for the
point based on the steady-state lift distribution _C_cal

k _ l_=Constant

three-dimensional surface in a uniform downwash (see refs. 8 and i0) multiplied

by the local angle of attack at the leading edge WZe _ and by the nonsteady

lift function for awing of infinite aspect ratio in a sinusoidal gust field

P + iQ (see ref. i, for example).

13



This may be expressed as

where

C-_al-0- \CLCa/c_=Constan t U LL_r/ t\Cr/j

ic0(t y tanu Ale)

Wle = _ge

(ii)

and describes the lag of penetration of the leading edge at the local chord rela-

tive to the leading edge at the root chord.

or

This equation is related to the generalized gust force,

01 clc
QGI qSCL_ d *

- U CLC a Y

QIG, for example, by

QG = qSCL_u /01 'CLCa'/%c_ _P(k¢) + iQI_Tr)l_os 'i_ tan AZe)
\ *_=Constant

- i sin (_ tan Ale)Idy*
(i2)

from which

II o) elCe1A__(y*,k) --- k¢) cos t c r t cr \ /_onstant

and

where

* y

Y b/2

(13)

(m4)

i4



and

1 (1
cr

For purposes of comparison with the results of the numerical lifting-surface

calculations, A_ and B_ from the strip theory were calculated for a 35 °

sweptback wing and for a 60 ° delta wing. The Prandtl-Glauert compressibility

correction as described in reference i0 was applied and the nearest geometric

configuration of sweep, taper ratio, and aspect ratio was used to obtain

CLCa/_=Constant from reference 8. The function P(k) + iQ(k) was obtained

from results given in reference i. As indicated in equation (12), in the appli-

cation the reduced frequency k was based on the local chord. A check has shown

very little difference between these results and those for P(k) + iQ(k) with

the reduced frequency based on the root chord.

The results of the strip theory in the form of A_ and BE are given,

together with those of the numerical lifting-surface calculations 3 in fig-

ures 6(a) and 6(b) for the 35 ° sweptback wing and in figure 6(c) for the

60 ° delta wing. The two sets of results agree fairly well for both wings at the

frequencies considered and should compare similarly for other frequencies lower

than the highest shown. Although not presented in the figures, values of C_
.

and DI from strip theory are generally somewhat lower than those from the

lifting-surface calculations. The ratios of amplitudes are about 78 percent for

the rectangular wing with A = 6.00; 88 percent for the 35 ° swept wing with

A = 9.43; and 85 percent for the 60 ° delta wing.

CONCLUDING REMARKS

The responses of six wing planforms to continuous sinusoidal gusts have been

calculated by the use of a lifting-surface procedure. This procedure provides

for the calculation of generalized gust forces on a basis consistent with that

for the calculation of generalized aerodynamic forces due to motion and deforma-

tion of a lifting surface. There are known limitations to the procedure, however,

and these are discussed; the procedure is limited to aspect ratios less than

about i0. The gust forces and moments are in forms suitable to be inserted in

equations of motion for calculation of dynamic responses of lifting surfaces to

random turbulence.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., August 20, 1962.
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TABEE I.- STEADY-STATE VALUES OF LIFT- AND PITCHING-MOMENT-CUEVE SLOPES

Planform A hT M dCL/d_ dCm/dm

Unswept

Unswept

Unswept

5° swept

5° swept
35° swept

35° swept

35° swept

35° swept
60° delta

60° delta

75° delta

75° delta

6.00

6.00

6.00

ll.6o
11.60

4.oo
4.oo
9.43
9.43
2.30

2.30

1.07

i .07

1.00

.50

.50

.44

.44

.42

.42

.42

.42

0

0

0

0

0
.40
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tending to produce vertical translation (equivalent to total lift),

normalized by the force magnitude for k = 0, for the various wing
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